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Preclinical mouse models suggest that the gut microbiome modulates tumor response
to checkpoint blockade immunotherapy; however, this has not been well-characterized
in human cancer patients. Here we examined the oral and gut microbiome of melanoma
patients undergoing anti–programmed cell death 1 protein (PD-1) immunotherapy
(n = 112). Significant differences were observed in the diversity and composition of
the patient gut microbiome of responders versus nonresponders. Analysis of patient
fecal microbiome samples (n = 43, 30 responders, 13 nonresponders) showed
significantly higher alpha diversity (P < 0.01) and relative abundance of bacteria of
the Ruminococcaceae family (P < 0.01) in responding patients. Metagenomic studies
revealed functional differences in gut bacteria in responders, including enrichment
of anabolic pathways. Immune profiling suggested enhanced systemic and antitumor
immunity in responding patients with a favorable gut microbiome as well as in
germ-free mice receiving fecal transplants from responding patients. Together, these
data have important implications for the treatment of melanoma patients with
immune checkpoint inhibitors.

T
remendous advances have beenmade in the
treatment of melanoma and other cancers
by using immune checkpoint inhibitors tar-
geting the cytotoxicT lymphocyte–associated
antigen 4 (CTLA-4) and programmed cell

death protein 1 (PD-1); however, responses to these
therapies are oftenheterogeneous andnot durable
(1–3). It has recently emerged that factors beyond
tumor genomics influence cancer development

and therapeutic responses (4–7), including host
factors such as the gastrointestinal (gut) micro-
biome (8–10). A number of studies have shown
that the gut microbiome may influence anti-
tumor immune responses by means of innate
and adaptive immunity (11, 12) and that thera-
peutic responses may be improved through its
modulation (13, 14); however, this has not been
extensively studied in cancer patients.

Tobetter understand the role of themicrobiome
in response to immune checkpoint blockade, we
prospectively collectedmicrobiome samples from
patients withmetastatic melanoma starting treat-
ment with anti–PD-1 therapy (n = 112 patients)
(fig. S1 and table S1). Oral (buccal) and gut (fecal)
microbiome samples were collected at treatment
initiation, and tumor biopsies and blood samples
were collected atmatched pretreatment time points
when possible, to assess for genomic alterations
as well as the density and phenotype of tumor-
infiltrating and circulating immune cell subsets
(Fig. 1A and fig. S2). Taxonomic profiling using
16S ribosomal RNA (rRNA) gene sequencing was
performed on all available oral and gut samples,
withmetagenomicwhole-genome shotgun (WGS)
sequencing performed on a subset (n = 25). Eligi-
ble patients (n= 89)were classified as responders
(R, n = 54) or nonresponders (NR, n = 35) on the
basis of radiographic assessmentusing the response
evaluation criteria in solid tumors (RECIST 1.1)
(15) at 6 months after treatment initiation. Pa-
tients were classified as R if they achieved an
objective response (complete or partial response
or stable disease lasting at least 6 months) or NR
(progressive disease or stable disease lasting less
than 6 months). This classification accounts for
the subset of patients whomay derive long-term
disease benefit despite not achieving a bona fide
RECIST response and has been used in numer-
ous published studies of patients on checkpoint
blockade (16–19). Of note, patients in R and NR
groups were similar with respect to age, gender,
primary type, prior therapy, concurrent systemic
therapy, and serum lactate dehydrogenase (table
S2). Prior genomic analyses have demonstrated
that patientswith tumors that have a highermuta-
tional load are more likely to respond to anti–
CTLA-4 (16, 20, 21) or anti–PD-1 therapy (21–24);
however, a high mutational load alone appears
neither sufficient nor essential for response. In
this cohort, the total number of mutations and
specific melanoma driver mutations were within
comparable parameters between R andNR after
anti–PD-1 therapy (fig. S3), though the number
of tumors available for sequencing (n = 10, R = 7,
NR = 3) was limited and may have reduced our
ability to detect a significant association between
mutational burden and response.
We first assessed the landscape of the oral and

gutmicrobiome in all available samples in patients
(n = 112) with metastatic melanoma using 16S
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sequencing, noting that both communities were
relatively diversewith a high abundance of bacte-
ria of the order Lactobacillales in the oral micro-
biome and Bacteroidales in the fecal microbiome
(Fig. 1B). Bipartite network analysis (25) demon-
strated a clear separation of community structure
between the oral and fecal microbiomes in terms
of both matched and aggregate samples (fig. S4),
suggesting that these communities are distinct
in terms of their compositional structure. Loss of
microbial diversity (dysbiosis) is associatedwith
chronichealth conditions (26–28) and cancer (8–10)
and is also associatedwith poor outcomes of certain
forms of cancer therapy, including allogeneic stem

cell transplant (29). Based on these data, we ex-
amined the diversity of the oral and gut micro-
biomes in eligible patients on anti–PD-1 therapy
and found that alpha diversity, or within-sample
diversity, of the gutmicrobiomewas significantly
higher in R (n = 30) compared to NR (n = 13)
using several indices (P< 0.01; Fig. 1C and fig. S5).
No significant differences were observed in the
oralmicrobiome (R= 54,NR=32,P=0.11; fig. S6).
We then tested the relationship of diversity and
progression-free survival (PFS) in our cohort by
stratifying patients based on tertiles of inverse
Simpson scores, demonstrating that patients in
the highest tertile of fecal alpha diversity had sig-

nificantly prolonged PFS compared to those with
intermediate or low diversity (P = 0.02 and 0.04,
respectively; Fig. 1, D and E, and fig. S7). No
differences in PFS were noted when comparing
diversity of the oralmicrobiome (fig. S8). Impor-
tantly, upon visualizing beta diversity, or between-
sample diversity,withweightedUniFrac distances
(30) by principal coordinate analysis, we found
a notable clustering effect by response status in
the gut microbiome of these patients, whichwas
not observed in the oral microbiome (Fig. 1F and
fig. S8E).
Because compositional differences in themicro-

biomemay also influence cancer development and
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Fig. 1. Higher gut microbiome diversity is associated with improved
response to anti–PD-1 immunotherapy in patients with metastatic
melanoma. (A) Schema of sample collection and analyses. (B) Stacked bar
plot of phylogenetic composition of common bacterial taxa (>0.1% abun-
dance) at the order level in oral (n = 109, top) and fecal (n = 53, bottom)
samples by 16S rRNA sequencing. (C) Inverse Simpson diversity scores of the
gut microbiome in R (n = 30) and NR (n = 13) to anti–PD-1 immunotherapy
by Mann-Whitney U rank sum (MW) test. Error bars represent the distribution
of diversity scores. (D) Phylogenetic composition of fecal samples (n = 39)

at the family level (>0.1% abundance) at baseline. High [blue, >11.63 (inverse
Simpson score), n = 13], intermediate (gold, 7.46 to 11.63, n = 13), and low (red,
<7.46, n = 13) diversity groups were determined using tertiles of inverse
Simpson scores. (E) Kaplan-Meier (KM) plot of PFS by fecal diversity: high
(median PFS undefined), intermediate (median PFS = 232 days), and low
(median PFS = 188 days). High versus intermediate diversity (HR 3.60, 95%
CI 1.02 to 12.74) and high versus low (HR 3.57, 95% CI 1.02 to 12.52) by
univariate Cox model. (F) Principal coordinate analysis of fecal samples
(n = 43) by response using weighted UniFrac distances. *P < 0.05; **P < 0.01.
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Fig. 2. Compositional differences in the gut microbiome are associated
with responses to anti–PD-1 immunotherapy. (A) Heatmap of OTU
abundances in R (n = 30) and NR (n = 13). Columns denote patients grouped
by response and sorted by diversity within R and NR groups; rows denote
bacterial OTUs grouped into three sets according to their enrichment and/or
depletion in R versus NR and then sorted by mean abundance within each
set. Set 1 (enriched in R), Set 2 (unenriched), and Set 3 (enriched in NR).
(B) Phylogenetic composition of OTUs within each set described in (A) at the
order level. (C) Taxonomic cladogram from LEfSe showing differences in
fecal taxa. Dot size is proportional to the abundance of the taxon. Letters
correspond to the following taxa: (a) Gardnerella vaginalis, (b) Gardnerella, (c)
Rothia, (d) Micrococcaceae, (e) Collinsella stercoris, (f) Bacteroides medi-
terraneensis, (g) Porphyromonas pasteri, (h) Prevotella histicola, (i) Faecali-
bacterium prausnitzii, (j) Faecalibacterium, (k) Clostridium hungatei, (l)
Ruminococcus bromii, (m) Ruminococcaceae, (n) Phascolarctobacterium

faecium, (o) Phascolarctobacterium, (p) Veilonellaceae, (q) Peptoniphilus, and
(r) Desulfovibrio alaskensis. (D) Linear discriminant analysis (LDA) scores
computed for differentially abundant taxa in the fecal microbiomes of R (blue)
and NR (red). Length indicates effect size associated with a taxon. P = 0.05
for the Kruskal-Wallis H statistic; LDA score > 3. (E) Differentially abundant
gut bacteria in R (blue) versus NR (red) by MW test [false-discovery rate
(FDR)–adjusted] within all taxonomic levels. (F) Pairwise comparisons by MW
test of abundances of metagenomic species identified by metagenomic WGS
sequencing in fecal samples (n = 25) for R (n = 14, blue) and NR (n = 11, red).
*P < 0.05; **P < 0.01. Colors reflect gene abundances visualized as
“barcodes” with the following order of intensity: white (0) < light blue < blue <
green < yellow < orange < red for increasing abundance, where each color
change corresponds to a fourfold abundance change. In these barcodes,
metagenomic species appear as vertical lines (coabundant genes in a
sample) colored according to the gene abundance.
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response to therapy (12, 14, 15, 23), we sought to
determine if differences existed in the oral or gut
microbiomes of R and NR to anti–PD-1 therapy.
To test this, we first compared an enrichment of
operational taxonomic units (OTUs) in R versus
NR, demonstrating that distinct sets of rare low

abundance OTUs were associated with response
to anti–PD-1 therapy, with enrichment of orders
Clostridiales in R and Bacteroidales in NR in the
gut microbiome (P < 0.01; Fig. 2, A and B, and
fig. S9, A and C). No significant differences in
enrichment were noted in the oral microbiome

of R versus NR (fig. S9, B and D, and fig. S10).
To further explore these findings, we performed
high-dimensional class comparisons using linear
discriminant analysis of effect size (LEfSe) (31),
which againdemonstrateddifferentially abundant
bacteria in the fecal microbiome of R versus NR
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Fig. 3. Abundance of crOTUs within the gut micro-
biome is predictive of response to anti–PD-1
immunotherapy. (A) Top: Unsupervised hierarchical
clustering by complete linkage of Euclidean distances
by crOTU abundances in 43 fecal samples. Bottom:
Stacked bar plot of relative abundances at the order
level by crOTU community type. (B) Association of
crOTU community types with response to anti–PD-1 by
Fisher’s exact test: crOTU community type 1 (black,
n = 11; R = 11, NR = 0) and crOTU community type 2
(orange, n = 32; R = 19, NR = 13). R, blue bars; NR, red
bars. (C) Comparison KM plot PFS curves by log-rank
test in patients with high abundance (dark blue, n = 19,
median PFS = undefined) or low abundance (light blue,
n = 20, median PFS = 242 days) of Faecalibacterium (top
PFS curve) or with high abundance (dark red, n = 20,
median PFS = 188 days) or low abundance (light red,
n = 19, median PFS = 393 days) of Bacteroidales (bottom
PFS curve). (D) Unsupervised hierarchical clustering of
pathway class enrichment calculated as the number of
MetaCyc pathways predicted in the metagenomes of
fecal samples from 25 patients (R = 14, NR = 11).
Columns represent patient samples (R, blue; NR, red),
and rows represent enrichment of predicted MetaCyc
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in response to anti–PD-1 therapy,withClostridiales
order and Ruminococcaceae family enriched in R
and Bacteroidales order enriched in NR (Fig. 2,
C and D). No major differences were observed in
the oralmicrobiome betweenR andNR, with the
exceptionof higherBacteroidales inNR in response
toanti–PD-1 therapy (fig. S11). Pairwise comparisons
were thenperformed for bacterial taxa at all levels
by response. In addition to confirming theprevious
taxonomic differences, these analyses identified
the Faecalibacterium genus as significantly en-
riched in R (Fig. 2E and table S3). Metagenomic
WGS sequencing further confirmed enrichment of
Faecalibacterium species in addition to others inR,
whereas Bacteroides thetaiotaomicron, Escherichia
coli, andAnaerotruncus colihominiswere enriched
in NR (Fig. 2F and table S4). Importantly, the gut
microbiome was shown to be relatively stable over
time in a limited number of longitudinal samples
tested (fig. S12).
We next asked whether bacterial composition

and abundanceswithin the gut and/or oralmicro-
biomes of patients were associated with a specif-
ic treatment outcome to anti–PD-1 therapy. We
grouped all identified OTUs into clusters of re-
lated OTUs (crOTUs) by means of construction
of a phylogenetic tree from sequence-alignment
data (32). This technique involves comparison of
abundances of different potential groupings of
bacteria based on 16S sequence similarity and
helps address the sparse distribution ofOTUabun-
dances observed in the absence of this approach
(fig. S13). Unsupervised hierarchical clustering of
crOTUabundanceswithin the gut and oralmicro-
biomes was then performed without input of re-
sponse data. We found that patients segregated
into twodistinct community types. Type 1was com-
posed entirely of R and was enriched for Clostri-
diales, whereas type 2 comprised a mixture of
R and NR (P = 0.02) and was enriched for
Bacteroidales (Fig. 3A). To better understand
compositional differences between these crOTU
community types, we again performed pairwise
comparisons of the gutmicrobiota and identified
a pattern very similar to that seen when cluster-
ing by response, with Clostridiales and Rumino-
coccaceae enriched in type 1, and Bacteroidales
enriched in type 2 (fig. S14A and table S5). Fur-
ther, these communities clustered distinctly
using principal coordinate analysis of weighted
UniFrac distances (fig. S14B). Analysis of crOTUs
in the oral microbiome revealed no apparent
relationship to treatment response (fig. S15,
A and B).
To explore how specific bacterial taxa affect

patient treatment response, we compared PFS
following anti–PD-1 therapy as it related to the
“top hits” that were consistently observed across
our analyses. From the Ruminococcaceae family
of the Clostridiales order, we focused on the
Faecalibacterium genus in R and Bacteroidales
order inNRand stratified patients intohigh versus
low categories on the basis of themedian relative
abundance of these taxa in the gut microbiome.
Patients with high Faecalibacterium abundance
had a significantly prolonged PFS versus those
with a low abundance (P = 0.03). Conversely, pa-

tients with a high abundance of Bacteroidales
had a shortened PFS compared to that of those
with a low abundance (P = 0.05, Fig. 3D). This is
in line with recently published data on CTLA-4
blockade, where patients with a higher abun-
dance of Faecalibacterium had a prolonged PFS
compared to those with a higher abundance of
Bacteroidales in the gut microbiome (33). In ad-
dition, univariate Cox proportional hazards ana-
lyses demonstrated that the strongest microbial
predictors of response to anti–PD-1 therapy were
alpha diversity [intermediate hazard ratio (HR) =
3.60, 95% CI = 1.02 to 12.74; low HR = 3.57, 95%
CI = 1.02 to 12.52] and abundance of Faecalibac-
terium (HR = 2.92, 95% CI = 1.08 to 7.89) and
Bacteroidales (HR = 0.39, 95% CI = 0.15 to 1.03)
in the fecal microbiome. Our final multivariate
model was selected by forward stepwise selec-
tion and included Faecalibacterium abundance
(HR = 2.95, 95% CI = 1.31 to 7.29, P = 0.03) and
prior immunotherapy (HR = 2.87, 95% CI =
1.10 to 7.89, P = 0.03) (table S6). Abundance of
Faecalibacterium and Bacteroidales also out-
performed relevant clinical variables in receiver
operating characteristic curve (ROC) analysis
(fig. S16).
Next, we sought to gain insight into the mech-

anism through which the gut microbiome may
influence response to anti–PD-1 therapy.We first
conducted functional genomic profiling of gut
microbiome samples using metagenomic WGS
sequencing (n = 25) in R (n = 14) versus NR (n =
11). Organism-specific gene hits were assigned
to theKyotoEncyclopedia of Genes andGenomes
(KEGG) orthology (KO), and, on the basis of these
annotations, metagenomes for each sample were
reconstructed intometabolic pathways using the
MetaCyc hierarchy of pathway classifications
(34, 35). Unsupervised hierarchical clustering of
predicted pathway enrichment identified two
groups of patient samples, with response rates
of 69.2 and 41.7% (Fig. 3E). A similar pattern was
also noted for KO abundances with 70.6 and
37.5% response rates (fig. S17). Comparisons of
pathway enrichment across these groups showed
differences in metabolic functions, with ana-
bolic functions predominating in R—including
amino acid biosynthesis (Fig. 3E), which may
promote host immunity (36)—and catabolic func-
tions predominating inNR (Fig. 3E, fig. S16, and
table S7).
There is clear evidence in preclinical models

that differential composition of the gut micro-
biome may influence therapeutic responses to
anti–PD-1 therapy at the level of the tumormicro-
environment (12); thus, we next examined the
relationship between the gut microbiota and
systemic and antitumor immune responses in
our cohort of patients on anti–PD-1 therapy. We
compared the tumor-associated immune infil-
trates usingmultiparameter immunohistochem-
istry (IHC) and observed a higher density of CD8+

T cells in baseline samples of R versus NR (P =
0.04), consistent with prior reports (Fig. 4A and
fig. S18) (18, 37). Pairwise comparisons using
Spearman rank correlationswere then performed
between specific bacterial taxa enriched in the

gut microbiome of R and NR and immunemark-
ers in the tumormicroenvironment, demonstrat-
ing a statistically significant positive correlation
between the CD8+ T cell infiltrate in the tumor
and abundance of the Faecalibacterium genus,
theRuminococcaceae family, and theClostridiales
order in the gut and a nonsignificant but nega-
tive correlation with Bacteroidales (Fig. 4, B and
C, and figs. S19 and S20). No associations were
seen between CD8+ T cell density and diversity
or crOTU community typemembership (fig. S21).
Analysis of systemic immune responses using
flow cytometry and cytokine assays revealed that
patients with a high abundance of Clostridiales,
Ruminococcaceae, or Faecalibacterium in the
gut had higher frequencies of effector CD4+ and
CD8+ T cells in the systemic circulation with a
preserved cytokine response to anti–PD-1 ther-
apy, whereas patients with a higher abundance
of Bacteroidales in the gut microbiome had
higher frequencies of regulatory T cells (Tregs)
andmyeloid-derived suppressor cells (MDSCs) in
the systemic circulation, with a blunted cytokine
response (Fig. 4D and figs. S22 and S23). To bet-
ter understand the influence of compositional
differences in the gut microbiome on antigen
processing and presentation within the tumor
microenvironment, we next performedmultiplex
IHC targeting the myeloid compartment (38). In
these studies, patients with a high abundance of
Faecalibacterium in the gut microbiome had a
higher density of immune cells and markers of
antigen processing and presentation compared
to that of patients with a high abundance of
Bacteroidales (Fig. 4, E and F, and figs. S24 and
S25), suggesting a possible mechanism through
which the gut microbiome may modulate anti-
tumor immune responses (12), though this must
be validated in a larger cohort.
To investigate a causal link between a “favor-

able” gut microbiome and response to immune
checkpoint blockade, we performed fecal micro-
biota transplantation (FMT) experiments in germ-
free recipientmice (Fig. 4G). In these studies,mice
that were transplanted with stool from respond-
ers to anti–PD-1 therapy (R-FMT) had signifi-
cantly reduced tumor size (P = 0.04; Fig. 4H and
fig. S26A) by day 14 compared to those trans-
planted with stool from NR (NR-FMT). Impor-
tantly, mice transplanted with R-FMT stool also
exhibited improved responses to anti–PD-L1
(PD-1 ligand 1) therapy (Fig. 4I) in contrast to
mice that were transplanted with stool fromNR
(NR-FMT). Next, we performed 16S sequencing
on fecal samples collected from mice treated
with FMT, demonstrating thatmice transplanted
with R-FMT stool also had significantly higher
abundance of Faecalibacterium in their gut mi-
crobiome (P < 0.01) (fig. S27). We also wanted to
better understand themechanism throughwhich
the gut microbiomemay influence systemic and
antitumor immune responses, and so we per-
formed correlative studies on tumors, periph-
eral blood, and spleens from these mice. These
studies demonstrated that tumors of mice re-
ceiving R-FMT stool had a higher density of CD8+

T cells thanmice receiving NR-FMT, consistent
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Fig. 4. A favorable gut microbiome is associated with enhanced systemic
and antitumor immunity. (A) Quantification by IHC of the CD8+ Tcell infiltrate
at pretreatment in tumors in R (n = 15, blue) and NR (n = 6, red) by one-sided
MW test. Error bars represent the distribution of CD8+ T cell densities.
(B) Pairwise Spearman rank correlation heatmap of significantly different
taxa in fecal samples (n = 15) at baseline and CD3, CD8, PD-1, FoxP3,
Granzyme B, PD-L1, and RORgTdensity in matched tumors. (C) Univariate
linear regression between CD8+ Tcell density in counts per mm2 in the tumor
versus Faecalibacterium [blue, coefficient of determination (R2) = 0.42,
P < 0.01] and Bacteroidales (red, R2 = 0.06, P = 0.38) abundance in the gut.
(D) Pairwise Spearman rank correlation heatmap between significantly
different fecal taxa and frequency of indicated cell types by flow cytometry in
peripheral blood at baseline. mDC, myeloid dendritic cell. (E) Representative
multiplex IHC images and (F) frequency of various immune cell types in
patients having high Faecalibacterium (n = 2) or Bacteroidales (n = 2) in the
gut. In (E), rectangles identify magnified region. MHC II, major histocompatibility
complex II. (G) Experimental design of studies in germ-free (GF) mice. Time
in days (indicated as D) relative to tumor injection (2.5 × 105 to 8 × 105

tumor cells). PO, per os (orally); BP, BRAFV600E/PTEN–/–; s.c., subcutaneous;

IP, intraperitoneal. (H) Difference in size by MW test of tumors at day 14,
implanted in R-FMT (blue) and NR-FMTmice (red), expressed as fold change
(FC) relative to average tumor volume of control GF mice. Data from two
independent FMTexperiments (R-FMT, n = 5, median FC = 0.18; NR-FMT,
n = 6, median FC = 1.52). (I) Representative tumor growth curves for each GF
mouse from anti–PD-L1 treated R-FMT (blue, n = 2, median tumor volume =
403.7 mm3), NR-FMT (red, n = 3, median tumor volume = 2301 mm3),
and control (black, n = 2, median tumor volume = 771.35 mm3) mice.
Statistics are as follows: P = 0.20 (R-FMT versus NR-FMT) and P = 0.33
(NR-FMT versus control) by MW test. Dotted black line marks tumor-size
cutoff for anti–PD-L1 treatment (500mm3). (J) Quantification of CD8+

density in tumor of R-FMT [n = 2, median = 433.5 cells/high-power field
(HPF) across 12 regions], NR-FMT (n = 2, median = 325 cells/HPF across
12 regions), and control mice (n = 2, median = 412 cells/HPFacross 9 regions).
MW test P = 0.30 (R-FMT versus control). (K) Quantification of CD8+

density in gut R-FMT (n = 2, median = 67 cells/HPFacross 7 regions), NR-FMT
(n = 2, median = 24 cells/HPF across 5 regions), and control (n = 2, median =
47 cells/HPF across 10 regions). MW test P = 0.17 (R-FMT versus control).
*P < 0.05; **P < 0.01; ****P < 0.0001.
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with human data (Fig. 4J and fig. S26B, top
series). Analysis of CD45+ myeloid and lymphoid
tumor-infiltrating cells by flow cytometry
confirmed this result (fig. S26C). Moreover,
FMT from R locally increased the number of
CD45+ immune and CD8+ T cells in the gut com-
pared to FMT from NR (Fig. 4K and fig. S26B,
bottom series). Mass cytometry analysis using
t-distributed stochastic neighbor embedding
dimension reduction was performed on tumors
from mice and demonstrated up-regulation of
PD-L1 in the tumor microenvironment of mice
receiving R-FMT versus NR-FMT stool (fig.
S26D), suggesting the development of a “hot”
tumor microenvironment. Further phenotypic
studies of tumor immune infiltrates revealed a
significant enrichment of innate effector cells
(expressing CD45+CD11b+Ly6G+) inmice receiv-
ing R-FMT stool (fig. S26E). A lower frequen-
cy of suppressive myeloid cells (expressing
CD11b+CD11c+) was observed in mice receiving
R-FMT stool compared to that of mice receiv-
ing NR-FMT (fig. S26F). Finally, an increase in
the frequency of RORgT+ T helper 17 cells in
the tumor was also detected in mice trans-
planted with NR-FMT stool (fig. S26G), in line
with what we observed in tumors from patients
who failed to respond to anti–PD-1 therapy.
Mice receiving NR-FMT stool also had higher
frequencies of regulatory CD4+FoxP3+ T cells
(fig. S26H) and CD4+IL-17+ T cells (fig. S26I)
in the spleen, suggesting impaired host immune
responses.
Our results indicate that the gutmicrobiomemay

modulate responses to anti–PD-1 immunotherapy
in melanoma patients. We propose that patients
with a favorable gutmicrobiome (for example, high
diversity and abundance of Ruminococcaceae and
Faecalibacterium) have enhanced systemic and
antitumor immune responses mediated by in-
creased antigen presentation and improved effec-
tor T cell function in the periphery and the tumor
microenvironment. By contrast, patients with an
unfavorable gut microbiome (for example, low
diversity and high relative abundance of Bacter-
oidales) have impaired systemic and antitumor
immune responses mediated by limited intra-
tumoral lymphoid andmyeloid infiltration and
weakened antigen presentation capacity. These
findings highlight the therapeutic potential of
modulating the gutmicrobiome inpatients receiv-
ing checkpoint blockade immunotherapy andwar-
rant prompt evaluation in cancer patients through
clinical trials.
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